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Determination of the Roots of the
Characteristic Equation for Corrugated and

Dielectric Loaded Circular Waveguides

Luiz Costa da Silva

Abstract—An algorithm is developed for the numerical determination
of the roots of the characteristic equation for corrugated and dielectric
loaded circular waveguides. The algorithm, based on geometrical proper-
ties of the characteristic equation and on the identification of the interval
of existence of each root, assures a fast and precise determination of all
the roots, real or complex, in a given interval.

I. INTRODUCTION

In the analysis and design of microwave devices employing cor-
rugated or dielectric loaded circular waveguides it is necessary to
determine, some times repetitively, the roots of the characteristic
equation of the waveguides. The analytical expressions for those
characteristic equations have been published in the literature several
years ago [1]–[3]. In the present paper, geometrical properties of
such equations will be employed in order to determine the interval
of existence of the roots, allowing the determination, by simple and
fast numerical methods, of all the roots, real or complex, in a given
interval without any missing roots.

II. FORMULATION

A. Corrugated Waveguides

The characteristic equation for a corrugated cylindrical waveguide,
with internal and external radiia andb, respectively, is given by [1]

FC(x)� � = 0 (1a)
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k0 being the free-space wavenumber,x the desired root,Jm(x)

the Bessel function of the first class and of orderm; J 0m(x) =

dJm(x)=dx, and� the normalized susceptance of the corrugation,
given by

� = �
J 0m(koa)Ym(kob)� Jm(kob)Y

0

m(koa)

Jm(koa)Ym(kob)� Jm(kob)Ym(koa)
(2)

Ym(x) being the Bessel function of the second kind and of orderm

and Y 0m(x) = dYm(x)=dx.
It was assumed in (1) that the fields have an angular dependence

of the formcos (m�) or sin (m�), � being the azimuthal coordinate
of the coordinate system with thez axis aligned to the axis of the
waveguide.
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For the particular case of imaginary roots,x = jxI , j =
p
�1,

(1) takes the form:

FI(xI) = � (3a)

where

FI(xI) = �
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Im(x) being the modified Bessel function of the first kind and of
orderm, and I 0m(x) = dIm(x)=dx.

Consideringx initially as a real variable, a simple examination of
FC(x) andFI(xI) shows that the following properties are verified:

1) FC(x) has discontinuities atx = p0nm and x = pnm, p0nm
being thenth root ofJ 0m(x) andpnm thenth root ofJm(x);

2) atx = pnm, FC(x) changes from positive to negative values;
at x = p0nm, FC(x) changes from positive to negative values
if x < koa, or from negative to positive values ifx > koa;

3) limx!0 FC(x) = limx!0 FI(xI) =
(k a) �m(m+1)

(m+1)k a
;

4) limx!1 FI(xI) =
(k a) �m

(k a)x
;

5) In the neighborhood ofx = 0, FI(xI) is a decreasing function
of xI if koa > m(m+ 2), or an increasing function if
koa < m(m+ 2).

Plots ofFC(x) andFI(xI) illustrating the above properties, are
shown in Fig. 1, the caseskoa > p0nm, p01m > koa > m(m+ 2),
m(m+ 2) > koa > m(m+ 1), m(m+ 1) > koa > m,

andm > koa being considered.
The properties ofFC(x) and FI(xI) and the plots shown in

Fig. 1(a)–(c), permit the identification of the intervals of existence
of the roots of the characteristic equation, as indicated below:

1) for 0 < x < p01m:
• if koa > p01m—there will be one real root ifFC(0) < �;
one imaginary root ifFC(0) > � and � > 0; no root if
� < 0;
• if p01m > koa > m(m+ 2)—there will be no root if
FC(0) < �; one real and one imaginary root ifFC(0) > �

and� > 0; one real root if� < 0;
• if m(m+ 2) > koa > m(m+ 1)—there will be no root
if max (FI(x)) < �; two imaginary roots ifmax (FI(x)) >

� and FC(0) < �; one real and one imaginary root if
FC(0) > � and� > 0; one real root if� < 0;
• if m(m+ 1) > koa > m—there will be no root if
max (FI(x)) < �; two imaginary roots ifmax (FI(x)) > �

and� > 0; one imaginary root ifFC(0) < � and� < 0; one
real root if FC(0) > �;
• if koa < m—there will be no root if� > 0; one imaginary
root if FC(0) < � and� < 0; one real root ifFC(0) > �;

2) for p01m < x < pn m:
• where pn m is the n1th root of Jm(x), satisfying the
condition thatp0n m is the largest root ofJ 0m(x) smaller than
koa: there will be one real root on each interval[p01m; p1m],
[p1m; p

0

2m]; � � � [p0n m; pn m];
3) for x > pn m:

• if � > 0, there will be two real roots or a pair of
complex conjugate roots on each interval[p0n +1;m; pn +1;m],
[p0n +2;m; pn +2;m], � � �; if � < 0 there will be two real
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(a) (b)

(c)

Fig. 1. Plot of the functionsFC(x) (——) and FI(x) ( - - - - ), for the following cases: (a)koa > p
0

1m. (b) p0
1m > koa > m(m+ 2) and

m(m+ 2) > koa > m(m+ 1). (c) m(m+ 1) > koa > m and m > koa.

roots or a pair of complex conjugate roots on each interval
[pn m; p

0

n +1;m], [pn +1;m; p
0

n +2;m] � � �.

Once the intervals of existence of the roots are identified, their
values can be determined in a fast and simple way.

In the case where there is only real root in a given interval, the
limits of the interval, and the sign of the functionFC(x) on these
limits are known. The root can be calculated by the method of [4],
using as interval for the search of the root[xi+�x; xf ��x], xi
andxf being the lower and upper limits of the interval of existence
of the root and�x a small number. If the sign ofFC(xi + �x)

is different from the previously known forlimdx!0 FC(xi + dx),
the value of the root can be established asxi+�x=2 with an error
less then�x=2 and the same reasoning applying to the upper limit
of the interval.

In the case where there are two real or a pair of complex conjugate
roots in a given interval, the minimum ofFC(x)=� in the interval,
xm, is initially determined numerically. IfFC(xm)=� < 1, there
will be two real roots, if not, there will be a pair of complex conjugate
roots. The real roots can determined by the method of [4], considering
the intervals[xi + �x; xm] and [xm; xf � �x] for the search of
the roots. For one of the complex roots (the second is the complex
conjugate), the method of [5] can be applied.

B. Dielectric Loaded Waveguides

The characteristic equation for a dielectric loaded circular wave-
guide, composed of an external metallic wall of radiusb and a
concentric dielectric cylinder of radiusa, is given by [3]:

FD(kc1a) =
m2�2
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kc1a being the desired root,ko the free-space wavenumber,�r1 the
dielectric constant of the dielectric cylinder,�r2 the dielectric constant
of the region external to the dielectric cylinder�2 = �r1k

2
o � k2c1 =

�r2k
2
o � k2c2, and
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(5a)
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If kc1a is real andkc1 < ko
p
�r1 � �r2, kc2 will be imaginary

and the Bessel functions, which appear in the expressions of the
functionsR andS must be replaced by the corresponding modified
Bessel functions. Ifm = 0, (4) decomposes into independent TE
and TM modes.

In the development below, it will be considered�r1 > �r2. The
case�r1 < �r2 can be easily adapted.

In a similar way as done for corrugated waveguides considering
x = kc1a initially as a real variable the following properties of
FD(x) are verified:

1) FD(x) has discontinuities atx = pnm, x = koa
p
�r1 � �r2,

x = xrnm andx = xsnm, xrnm andxsnm being the values
of x for which kc2a is thenth root of the denominator of the
functionsR andS, respectively. The numerical determination
of xrnm andxsnm is in the Appendix.

2) The sign ofFD(x) is negative immediately before and imme-
diately after the discontinuity atx = pnm.

3) FD(x) has opposite signs immediately before and immediately
after the discontinuities atx = xrnm and x = xsnm. The
sign ofFD(x) immediately afterxrnm can be determined by
calculatingFD(xrnm), but replacing in the denominator or
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TABLE I
VALUES OF THE FIRST THREE ROOTS OF THECHARACTERISTIC

EQUATION, � AND koa, FOR m = 1, FOR A CORRUGATED

CYLINDRICAL WAVEGUIDE WITH a = 28 mm AND b = 70 mm

R, xrnm by xrnm +�x with �x being a small number. The
same reasoning applies to the discontinuities atx = xsnm.

4) limx!0 FD(x) = 0 and FD(x) assumes positive values in
the neighborhood ofx = 0.

As a consequence of the above properties, in each interval between
two consecutive discontinuities there will be:

1) one real root if the signs ofFD(x) at the lower and upper
limits of the interval are opposite;

2) two real roots ifFD(x) has the same sign at both limits of the
interval andmin [FD(x)�sign (FD(xi))] < 0, sign (FD(xi))

being the sign ofFD(x) at the lower limit of the interval;
3) a pair of complex roots ifFD(x) has the same sign at both

limits of the interval andmin [FD(x) � sign (FD(xi))] > 0.

The real and complex roots can be determined applying the same
procedures used in the case of corrugated waveguides.

III. N UMERICAL RESULTS

Computer programs were elaborated according to the methods
described above to calculate the roots of the characteristic equations
for corrugated and dielectric loaded waveguides.

The values of the first three roots and the corresponding values
of � andkoa for a corrugated cylindrical waveguide witha = 28:0

mm, b = 70:0 mm, at different frequencies, form = 1, are shown
in Table I. The table illustrates the several ranges of values ofkoa

discussed in item 2. Values of the propagation constant of the first
two modes of propagation (EH11 andHE11) for this waveguide, at
different frequencies, are shown in Table II. As can be observed, the
first mode has two propagation constants, the first one corresponding
to a backward wave, and the second one to a slow wave. This kind
of behavior is indicated in [1, Fig. 2(c)] that shows the dispersion
diagram for a corrugated waveguide with the same dimensions of the
example considered here.

The first four roots of the characteristic equation for a dielectric
loaded circular waveguide witha = 10:0076 mm, b = 12:70 mm,
�r1 = 37:6, �r2 = 1:0, at the frequency of 4.0 GHz, form = 0,
1, 2, 3, and4, are shown in Table III. The roots marked with� are
the same as on [6, Table II]. Complex roots were not considered in
this reference.

IV. CONCLUSION

The interval of existence of each root of the characteristic equation
for corrugated and dielectric loaded circular waveguides can be
determined from the geometrical properties of these equations. Once

TABLE II
VALUES OF THE PROPAGATION CONSTANT OF THE FIRST

TWO MODES WITH m = 1, FOR A CORRUGATED

CYLINDRICAL WAVEGUIDE WITH a = 28 mm, b = 70 mm

TABLE III
FIRST FOUR ROOTS OF THECHARACTERISTIC EQUATION, FOR A DIELECTRIC

LOADED CIRCULAR WAVEGUIDE WITH a = 10:0076 mm, b = 12:70 mm,
�r1 = 37:6, �r2 = 1:0, AT 4.0 GHz,FOR m = 0; 1; 2; 3, AND 4

the intervals of existence are known, the roots can be calculated by
simple and reliable numerical methods.

APPENDIX

Roots of the Denominators of the FunctionsR andS

If kc2 is imaginary, the denominators ofR andS in (5b) and (5c)
have no roots. Ifkc2 is real, the roots of the denominator ofR are
the solutions of:

Jm(�x)Y
0

m(x)� J
0

m(x)Ym(�x) = 0 (A1)

where � = a=b, andx = kc2b

Applying the asymptotic expressions of the Bessel functions for
small and large arguments, the following approximate expressions
results for thenth root of (A1):

xr<nm = p0nm; n = 1; 2; � � � ; if m > 0; � � 1

xr<1m = �2

ln (�)
; if m = 0; � � 1

xr<nm = p0n�1;0; n = 2; 3; � � � ; if m = 0; � � 1

xr>nm =
(2n�1)�=2

(1��)
; n = 1; 2; � � � ; if � �= 1

xr<nm and xr>nm being the approximatenth root of (A1) for the
cases� � 1 and � �= 1, respectively.

Based on the above results, the following semiempirical expression,
valid for 0 � m � 50, 0 < � < 1, can be built for the approximate
values of the first three roots of (A1):

xr
ap
nm = (c1xr

<
nm)2 + (c2xr

>
nm)2; n = 1; 2; 3; 0 � m � 50

(A2)

where

c1 = (1� �)
�r

; c2 =
2�

1 + �

�r (m+1)
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with

�rn =

0.088 969, if n=1
0.011 57, if n=2
0.019 70, if n=3

�rn =

0.4450, if n=1
0.3985, if n=2
0.4277, if n=3


rn =

0.6189, if n=1
0.6039, if n=2
0.5178, if n=3.

The values of the parameters�rn, �rn, and 
rn were deter-
mined numerically, in order to minimize the average error of the
approximate roots.

The exact values of the roots can now be calculated by the method
of [4] using as interval for the search of the rootsxrnm : [xr

ap

1m �

:4(xr
ap

2m � xr
ap

1m); xr
ap

1m + :4(xr
ap

2m � xr
ap

1m)], for n = 1; [xr
ap
nm �

:4(xr
ap
nm � xrn�1;m); xr

ap
nm + :4(xr

ap
nm � xrn�1;m)], for n = 2

and n = 3, and [xrn�1;m + :4(xrn�1;m � xrn�2;m); xrn�1;m +

1:4(xrn�1;m � xrn�2;m)] for n � 4.
The roots of the denominator of the functionS are the solution of:

Jm(�x)Ym(x)� Jm(x)Ym(�x) = 0: (A3)

It should be observed that this equation is the same as the
characteristic equation for TM modes in a coaxial circular waveguide.

The procedure to determine the rootsxsnm is the same as applied
to the functionR. The method of [4] is again used, with the same
intervals defined above forR, but replacingxrapnm andxrnm by xsapnm
andxsnm, respectively. The values ofxsapnm are given by:

xs
ap

nm = (c3xs
<
nm)2 + (c4xs

>
nm)2; n = 1; 2; 3; 0 � m � 50

(A4)

with

c3 =(1:� �)
�s

c4 =
2�

1 + �

�s (m+1)

xs
<

nm =pnm xs
>

nm =
n�

1 + �

�sn =

-0.002 591, if n=1
0.015 33, if n=2
0.024 62, if n=3

�sn =

0.2853, if n=1
0.4413, if n=2
0.4068, if n=3


sn =

0.8402, if n=1
0.5396, if n=2
0.5014, if n=3.
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Analytical Behavior of the Noise Resistance
and the Noise Conductance for a Network

with Parallel and Series Feedback

Luciano Boglione, Roger D. Pollard, and Vasil Postoyalko

An analysis is presented of the changes of the noise parameters of a
two-port network when noisy series and parallel feedback immittances
are applied. Exact formulas for the noise parametersRn; gn, and �n
are given as functions of the feedback for a given network. It is proved
that Rn always reaches a minimum when a reactive series feedback is
considered. The same results are demonstrated forgn since a duality
principle is pointed out. The results are valid for a wide range of linear
microwave two-port networks, either passive or active, and they are used
to confirm the data from previously published work.

Index Terms—Amplifier noise, feedback amplifiers, feedback circuits,
microwave amplifiers, noise.

I. INTRODUCTION

In [1], some guidelines are outlined for feedback amplifier design.
The resistive parallel feedback has been investigated by [2] and [3].
The change of the noise figure in the case of either parallel or
series feedback was worked out by [4]. In [5], series and parallel
feedback are analyzed in order to get simultaneously optimum noise
and good input/output standing-wave ratio (SWR). In [6], monolithic
technology to fabricate a series feedback amplifier in order to get good
repeatability during fabrication and the simultaneous noise match and
optimum input SWR is applied. Both simulation and experimental
validation of anX-band monolithic four-stage low-noise amplifier
with series feedback is carried out in [7]; however, the paper does
not detail how the simulation has been carried out.

This paper generalizes the results of [6] and [7] using a procedure
similar to [1], provides a mathematical tool to investigate the signal
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